
18.º CONGRESSO DO COMITÉ PORTUGUÊS DA URSI 1
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Abstract—Human Activity Recognition (HAR) is the identifi-
cation and classification of static and dynamic human activities,
which find applicability in domains like healthcare, entertain-
ment, security, and cyber-physical systems. Traditional HAR
approaches rely on wearable sensors, vision-based systems, or
ambient sensing, each with inherent limitations such as privacy
concerns or restricted sensing conditions. Recently, Radio Fre-
quency (RF)-based HAR has emerged, relying on the interaction
of RF signals with people to infer activities. Reconfigurable Intel-
ligent Surfaces (RISs) offers significant potential in this domain
by enabling dynamic control over the wireless environment, thus
enhancing the information extracted from RF signals.

We present an Hand Gesture Recognition (HGR) approach
that employs our own 6.5GHz RIS design to manipulate the
RF medium in an area of interest. We validate the capability
of our RIS to control the medium by characterizing its steering
response, and further we gather and publish a dataset for HGR
classification for three different hand gestures. By employing
two Convolutional Neural Networks (CNNs) models trained on
data gathered under random and optimized RIS configuration
sequences, we achieved classification accuracies exceeding 90%.

Index Terms—reconfigurable intelligent surface, reflect-array,
WiFi-6E, antennas, beamsteering, RF sensing, human activity
classification

I. INTRODUCTION

HAR is a growing field dedicated to identifying and clas-
sifying all forms of human activity, encompassing both static
and dynamic motion [1]. Figure 1 illustrates different types
of human activity, which include static activities, dynamic
activities, and activities involving postural transitions [2].
Static activities include lying, sitting, and standing, which are
generally easier to identify but can be confused with similar
postures. Dynamic activities involve continuous movement,
such as walking or running, which require distinguishing
between different motion patterns. Activities with postural
transitions, such as sitting to standing or walking to jogging,
involve shifts between static and dynamic states and can be
particularly complex due to overlapping motion patterns.

The capability of performing accurate HAR has the potential
to significantly impact various domains [3]. In healthcare,
HAR can assist in monitoring patient conditions and detecting
early signs of medical issues [4]. In smart environments,
HAR can enhance home assistance services to improve quality
of life and autonomy [5]. In sports, it can contribute to
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Fig. 1. Types of Human Activity Recognition and respective examples.

improving personal health and well-being [6]. In security,
HAR can be used for surveillance to identify unusual events
[7]. Additionally, HAR improves human-computer interaction
(HCI) by enabling more intuitive and responsive interfaces [8].

However, HAR is complex, requiring selecting and de-
ploying suitable sensors to collect information-rich data, pre-
processing the data, and extracting relevant features. After-
ward, a range of approaches can be considered to process the
data, including machine learning and deep learning algorithms
to recognize activities [9]. Regarding specific sensor types,
HAR approaches may be vision-based, through monocular or
stereo cameras [10], based on sensors such as accelerom-
eters, which can be worn on the body or integrated into
smartphones or smartwatches to capture direct movement data
[11]. Additional sensors can provide secondary parameters
like temperature and humidity, and provide further contextual
information [12].

Another emergent method for HAR is the use of RF
characteristics of the environment, where data relative to the
interaction of stray or controllable RF signals with objects or
people within a given Space-of-Interest (SoI) is used as the
sensor component of the system. By relying on RF signals,
activities can be detected or classified through the effects
of body movements on the propagation of these signals,
allowing for HAR techniques that address concerns about
monitoring and privacy [13]. It does not require wearable or
environmental sensors, providing a noninvasive and lower cost
approach, instead exploiting the already existing plethora of
RF signals in the environment that originate from ubiquitous
commodity networks like 5G or WiFi. Since reflected RF
signals are also captured by receiving antennas, information
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(a) Regular Refletor (b) RIS

Fig. 2. Regular reflector vs. RIS, which achieves non-specular reflections
through programmable phase shifts (adapted from [19]).

can be gathered even in Non-Line-of-Sight (NLoS) conditions
[14], and depending on the signal frequency, even through-
wall detection can be considered [15], [16]. Finally, the use
of higher frequency signals can even provide a high spatial
resolution, which has demonstrated advantages over vision-
based systems for multi-person recognition [17].

Despite these advantages, wireless environments are com-
plex and difficult to model. Not only is there no direct
control over the stray RF signals in a region of interest,
but there is also the complexity of multi-path interference,
caused when signals reflect off different surfaces and reach
the receiver through various paths [18]. Thus the difficulty of
clearly relating and modeling the parameters of received RF
signals to the status of the environment derives from a largely
uncontrolled propagation medium.

Reconfigurable Intelligent Surfaces (RISs) are a promising
solution to achieve this medium control. They are composed
by a 2D matrix of antenna elements, also called unit cells.
These cells contain no active RF chains and act only as
reflectors. Simple electronics are used to change the reflection
coefficient of each individual unit cell, and consequently a RIS
can adjust the surface impedance to produce specific phase
shifts for each of the reflected replicas of the incident signal,
thus achieving control of the wireless environment [20], [21].

For instance, whereas a specular reflector like a metal
surface shown in Figure 2a deflects a signal at an angle equal
to the angle of incidence, specific control patterns applied to
the unit cells of a RIS can be used to generate constructive
interference to focus the total reflection into a particular direc-
tion, achieving non-specular reflections, as shown in Figure 2b.

The advantages for communication systems are increased
spectral efficiency and power consumption, by reducing radi-
ation towards unintended directions, and support for NLoS
communications, since links can be redirected around ob-
stacles. But applications go beyond communication, as this
medium control places RISs as a candidate technology to also
enable applications like localization, imaging, or sensing [22],
[23], [24], [20], [25], [26], in emergent networks like 6G [27].

Concurrently, the WiFi-6E standard has recently been de-
fined, promising to deliver a throughput of up to 9.6Gbps by
extending WiFi capability into the 5.925GHz to 7.125GHz
range. This expansion allows for up to seven 160MHz MHz
channels, compared to the two channels available in Wi-
Fi 5 and Wi-Fi 6, or alternatively up to 59 channels with
a bandwidth of 20MHz. Despite this, this frequency range
suffers from greater path loss relative to previous WiFi stan-
dards, and also greater attenuation through walls or objects,

compromising NLoS operations. This introduces the need for
signal repeaters or greater transmission power.

Considering the signal manipulation capabilities explained
before, namely signal steering, RISs are once again placed as
a potential low-cost solution to fulfill the expected benefits of
WiFi-6E. Moreover, the use of RISs operating in WiFi ranges
has already demonstrated the viability of localization [28] and
imaging [29] systems. However, to the best of our knowledge,
RIS designs for Wi-Fi 6E are under-explored. Given the
anticipated ubiquity of Wi-Fi networks and the advantages
offered by Wi-Fi 6E, we address this gap by investigating the
use of a Wi-Fi 6E RIS for sensing applications.

In this paper, we implement an HAR recognition approach
by using a RIS to implement sensing of the medium, allowing
for activity classification through RF channel data. Specifi-
cally, we will address the classification of static activities,
namely HGR, which focuses on detecting hand movements
and static hand positions. This technique is relevant for appli-
cations like human-computer interaction, virtual reality, and
sign language recognition [30].

The resulting contributions are as follows:
• The design and fabrication of a PIN diode based unit

cell for a RIS and with a 1-bit phase control, targeting
the range of WiFi6-E (for fc = 6.5GHz).

• Characterization of the magnitude and phase response
of the unit cell in a waveguide environment, and of
the radiation pattern of an 8x8 RIS tile in an anechoic
chamber for different frequencies and steering angles.

• Modeled the environment and channel for an HGR sys-
tem, and implemented RIS configuration sequences for
sensing the environment through S21 parameters.

• Collected and made publicly available a dataset of S21

data designed for RF-based classification of three human
hand gestures.

• Demonstrated the successful classification of gestures
using this dataset, for two different CNN architectures.

The remainder of this paper is organized as follows: in
Section II we review general aspects of HAR and RIS design
and relevant works in both fields; in Section III we explain
our approach for HAR – specifically HGR – using our own
RIS design, including an explanation of our channel model,
RIS configuration scheme, and gesture classification method;
in Section IV we present the results of a series of experiments,
including characterization of the fabricated RIS, and different
sensing setups and dataset gathering, culminating in a CNN
based classification of hand gestures through RF data; finally,
Section V concludes the paper.

II. RELATED WORK

Achieving high performance RF sensing is challenging in
general, particularly since the areas of interest for sensing, and
the RF medium itself, are subject to physical obstacles com-
promising Line-of-Sight (LoS), and the effects of multipath
interference. Functional radio limitations such as the viable
amount of information to be carried by transmission channels
also compromise the viability of sensing.

To tackle this, some approaches rely on deep learning
techniques to extract features directly from RF data without



PAULINO et al., HUMAN ACTIVITY RECOGNITION WITH A 6.5GHz RECONFIGURABLE INTELLIGENT SURFACE FOR WI-FI 6E 3

(a) conventional environment (b) smart environment

Fig. 3. a) Conventional environment with diffuse signal scattering; b)
Reconfigurable environment with RIS enabling targeted signal beamforming.

explicit modeling of complex physical processes, enhancing
data processing capabilities [31]. However, the major obstacle
in RF sensing is the uncontrollability of the medium. The use
of RISs allows for this control to be achieved, as the response
of the medium is a function of known applied control.

A RIS can manipulate the propagation of electromagnetic
waves, enabling dynamic adjustments of phase shifts and am-
plitude ratios along propagation paths. By reconfiguring these
parameters, RIS creates more favorable channel conditions for
RF sensing, optimizing signal transmission and reception [32].
Thus, unlike conventional surfaces, which scatter radio waves
based on their material properties and boundary conditions,
a RIS can direct reflected signals towards specific locations,
enhancing the accuracy of RF sensing systems for human
activity detection, as shown in Figure 3.

Given this context, we now review the state-of-the-art from
two perspectives. Firstly we present relevant works in the field
of RF sensing for Human Activity Recognition (HAR), focus-
ing specifically on RIS based approaches. We also provide
a respective summary in Table I at the end of the section,
including our own approach. Secondly, we briefly review
hardware designs for RIS designs comparable to the design
we have employed in this paper.

A. RF Sensing through Reconfigurable Intelligent Surfaces

In [26] the authors propose a novel RF sensing system that
actively customizes the propagation environment by optimiz-
ing the configurations of the RIS. This approach addresses
the limitations of conventional RF sensing techniques, which
often struggle with multi-path fading and restricted trans-
mission channels. By leveraging the capabilities of the RIS,
the system can create multiple independent paths for signal
transmission, thereby enriching the information available for
accurate posture recognition. The authors employ the Frame
Configuration Alternating Optimization (FCAO) algorithm,
which minimizes the mutual coherence of the measurement
matrix. This reduction in mutual coherence enhances the
system’s ability to distinguish between different postures and
facilitates this classification task. The experimental setup fea-
tures a horn antenna that emits signals towards the RIS, while
an omnidirectional antenna captures the reflections from the
human body, utilizing S21 parameters as raw data to evaluate
the system’s performance. The effectiveness of their approach
is demonstrated through practical experiments, resulting in a

remarkable improvement in recognition accuracy for 4 pos-
tures, achieving up to 96.7% with optimized configurations,
compared to 82.1% in random configurations and 73.2% in
non-configurable environments.

Li et al. [33] present a significant advancement in radio-
frequency (RF) sensing systems with their intelligent metasur-
face imager and recognizer, which operates at approximately
2.4 GHz, one of the standard Wi-Fi frequency bands. This
system enhances HAR by adaptively manipulating ambient
RF signals to capture detailed images of human bodies and
recognize gestures and vital signs in real-time. The approach
relies on an Artificial Neural Networkss (ANNs) to process RF
signals, effectively transforming them into silhouette images of
individuals by integrating a vision dataset. The authors adapt
the configuration of the RIS in real-time, according to the
processed RF data and the specific areas of interest identified
by the ANNs. This capability allows the system to focus
electromagnetic fields on selected body parts while minimizing
interference from the surrounding environment and enables
the system to distinguish between various hand signs and
monitor vital signs, such as respiration, even when individ-
uals are uncooperative or positioned behind obstacles. The
experimental setup includes a large-aperture programmable
metasurface, transmitting and receiving antennas, and a Vector
Network Analyser (VNA) for data acquisition, along with a
network of ANNs. This configuration enables the system to
distinguish between various hand signs and monitor vital signs,
such as respiration, even when individuals are uncooperative
or positioned behind obstacles.

In [34] the authors present an approach of electromagnetic
sensing utilizing a programmable metasurface for imaging and
body gesture recognition tasks at 2.4 GHz. This innovative
system shapes waves illuminating the scene and enhances
sensing quality by employing multiple coding patterns of the
metasurface, resulting in improved resolution in the image
reconstruction of body postures. A key contribution of this
work is the integration of two deep ANNs: the measure-
ment ANN (m-ANN) for adaptive data acquisition and the
reconstruction ANN (r-ANN) for instant data processing. This
integrated framework allows for the simultaneous optimiza-
tion of measurement strategies and data processing schemes,
significantly enhancing the efficiency and accuracy of human
activity recognition tasks. The experimental setup employs a
dual-antenna configuration using horn antennas, where one
antenna serves as the transmitter and the other as the receiver.
These antennas are connected to a VNA, which captures the
S21 parameters as the data.

Wang et al. [35] introduce an innovative camera system that
integrates programmable electromagnetic metasurfaces with
deep learning techniques, establishing a Bayesian inference
framework to enhance data acquisition and processing. A key
contribution of this work is the development of an intelli-
gent EM metasurface camera capable of visualizing human
behaviors behind a 60 cm-thick reinforced concrete wall. This
capability is achieved through the use of a large-aperture
programmable metasurface, which allows for adaptive data
acquisition, and artificial neural networks that facilitate instant
data processing. The system operates at a frequency of approx-
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TABLE I
SUMMARY OF RIS-BASED HUMAN ACTIVITY RECOGNITION

APPROACHES

Approach Anechoic
Env.

Freq.
(GHz)

Type of
HAR

RIS Config.

Hu et al.
[26]

Yes 3.2 Posture
Recognition

FCAO algorithm

Li et al.
[33]

No
(indoor)

2.4 Hand Gesture
Recognition,
Vital Signs

Gerchberg-
Saxton algorithm

Li et al.
[34]

No
(indoor)

2.4 Posture
Recognition

m-ANN

Wang et
al. [35]

No
(indoor)

2.4 Behavior
Monitoring

Random patterns

Li et al.
[36]

Yes 2.4 Posture
Recognition

Gerchberg-
Saxton algorithm

This work Yes 5.0 to
6.5

Hand Gesture
Recognition

FCAO
Algorithm

imately 2.4 GHz, demonstrating robust performance in real-
world settings, even in visually obstructed environments. The
experimental setup includes a low-cost commercial software-
defined radio device (Ettus USRP X310), a transmitting an-
tenna, and a three-antenna receiver, and a single controlling
personal computer. The camera employs a compressive mi-
crowave measurement strategy, utilizing 18 control patterns
per image to optimize the trade-off between imaging quality
and efficiency. This innovative approach not only enhances the
frame rate but also significantly improves the Signal-to-Noise
Ratio (SNR) of the acquired data, making it a promising tool
for smart community applications and beyond.

Li et al. [36] present a digital imaging system based on
a reprogrammable metasurface that utilizes machine-learning
techniques to optimize real-time image capture. The system
employs a two-step training strategy where desirable radiation
patterns are first learned using machine learning algorithms,
and then the corresponding coding patterns of the metasurface
are designed to achieve the desired radiation configuration.
This approach enables the generation of optimized measure-
ment modes that facilitate high-quality object recognition and
imaging while significantly reducing the number of required
measurements. By leveraging a modified Gerchberg-Saxton
algorithm [37] for discrete-valued optimization, the system ef-
fectively tailors the electromagnetic wave manipulation in real-
time, enhancing the accuracy and efficiency of the imaging
process. A key contribution of this research is the implemen-
tation of an image that can be electronically reprogrammed in
real-time, allowing for the generation of measurement modes
required for machine learning techniques, such as Principal
Component Analysis (PCA). The authors demonstrate that by
using a prototype of the imager, it is possible to achieve high-
accuracy object classification and image reconstruction, even
in dynamic scenarios. The experimental results validate the
effectiveness of the system, showing that it can operate with
a significantly reduced data acquisition time, representing an
important advancement in the field of imaging and recognition.
The experimental setup consists of a 2m×2m×2m anechoic

chamber, equipped with a transmitting horn antenna and a
waveguide receiver, with a VNA for S21 data acquisition.

Finally, the last row of Table I lists the approach presented
in this paper. Relative to the state-of-the-art works we have
reviewed, it is, to the best of our knowledge, the only RF
sensing approach based considering the WiFi-6E frequency
range, with or without the use of a RIS.

B. Unit Cell and Reconfigurable Intelligent Surface Designs

In [38] a RIS design for 3.5GHz is evaluated in a real-
world environment. The design is fabricated on 1.52mm thick
F4BT450 substrate and contains 2430 unit cells in a near
square layout. A varactor is employed per unit cell to achieve
a phase control range of close to 360◦. The experimental setup
consisted of an RX in non-line-of-sight from the TX and used
an SDR implementation to stream data using QPSK modula-
tion. The RIS and RX were placed at three different relative
orientations to demonstrate the RIS steering capabilities.

A RIS tuned for 5.8GHz with 16x10 elements is presented
in [39]. Using one PIN diode per element a phase difference
of 171◦ between states is achieved. The design uses a single
layer Rogers RT 6002 substrate, and the diodes are controlled
by shift registers and a micro-controller on an external PCB.
The RIS is evaluated outdoors, with a feed horn placed 5m
away on the same horizontal plane as the RIS. An RX horn
placed 10m away is moved in a quarter circle range, verifying
that the RIS improves the SNR at the RX by up to 15 dB.

In [40] the authors present an open-source design for a RIS
and unit cell tuned for 5.5GHz, fabricated on FR4 substrate
with three layers. Each unit cell is controlled by a low-
power RF switch, which sets the unit cell to either a short
or open state. An ideal difference of 180◦ is achieved at the
central frequency. The RIS contains 256 elements in a 16x16
disposition and is controlled by an additional board assembled
to its bottom layer which interfaces via USB or Bluetooth.

In [41] focus is on datasets of sub-6GHz RIS characteri-
zation, highlighting that the lack of available datasets hinders
research on codebook generation or optimization. They also
make available two of their own datasets collected with a
10x10 5.3GHz RIS on an FR4 substrate with 0.5mm thick-
ness. The unit cells rely on SP8T RF switch which enables
configuring the phase response to eight different values. Using
a setup similar to ours, with the RIS and feed horn mounted
on a turntable, the steering performance is characterized for a
range of ±90◦ and sub-arrays of elements of several sizes.

III. IMPLEMENTING RECONFIGURABLE INTELLIGENT
SURFACE BASED HAND GESTURE RECOGNITION

Recent work has shown the viability of using S21 pa-
rameters as data for HAR-related classification tasks [42],
[43], [44]. This includes our own previous work, where we
implemented Human Posture Recognition (HPR) using RF
sensing [45]. However, we relied only on specular reflections,
i.e., without resorting to a RIS. In this paper, we enhance the
approach by using our own RIS, which we have designed and
fabricated for a central frequency of 6.5GHz, thus keeping
in mind its application for WiFi-6E capable scenarios. The
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Fig. 4. System architecture diagram illustrating the three main components:
Data Acquisition, Data Processing and Training, and Gesture Classification.

RIS enables dynamic and configurable signal paths, providing
greater flexibility in RF signal manipulation [46], [47], [48].

Due to the dimensions of our RIS tile (18.46 cm2), we
focus specifically on Hand Gesture Recognition (HGR). That
is, since the dimension of the RIS restricts it to a smaller area
of interest, we consider hand gesture recognition a more viable
application for this setup. Our approach and setup are illus-
trated in Figure 4, divided into three stages. Firstly, we design
and implement the experimental setup for data collection. This
includes the channel between a source antenna Tx, our RIS
design, and the target receiver antenna Rx. The SoI, where the
human hand whose gesture we wish to classify is present, is
placed in front of the RIS. Data is gathered by configuring the
RIS to a desired state, triggering the transmission of a signal
from the Tx through a VNA, and recording the S21 parameters
at the Rx. We gather data for three different hand gestures. To
determine the RIS configurations to use, we adopted a strategy
similar to the one presented by Hu et al. [26], as we explain
in detail in Section III-B.

Secondly, we rely on CNNs to interpret RF signals as
images, as presented by Li et al. [33]. Thus we process the
S21 data in order to represent it as image data and train
two different CNN architectures. Specifically, we train each
architecture with two datasets, one gathered using random
sequences of RIS configurations, and another using optimized
sequences which increase the information extracted from the
channel. Finally, we evaluate the learning rates and classifica-
tion accuracies of both models for both datasets.

The following sections present the implementation aspects

Fig. 5. Geometric configuration between Tx and RIS, considering distance
(H), offset angle θ0, and location of FBP.

TABLE II
PARAMETERS FOR HGR EXPERIMENTAL SETUP

Parameter Formula

Feed Location (xc, yc, zc) = (0,−Htanθ0, H)
Feed Beam Point (x0, y0, 0)
Element location (x, y, 0)

df—FBP r0 =
√

(x2
0 + y20 +H2sec2(θ0) + y0(2Htanθ0)

df—e r =
√

(x2 + y2 +H2sec2(θ0) + y(2Htanθ0)

dFBP—e s =
√

(x− x0)2 + (y − y0)2

of each component. Firstly, in Section III-A, we explain the
model of the physical setup of the approach, as well as
the channel model including the RIS. We then explain in
Section III-B how sensing can be achieved by then applying
a sequence of RIS configuration states over this model, and
also explain how we generate an optimized sequence of these
states. Finally, we explain the hardware implementation as-
pects, namely of the unit cell and of the RIS tile Section III-C.

A. Modeling and Configuring the HGR Experimental Setup

Our approach requires determining a physical configuration
between the RIS, TX, and RX. Proper antenna positioning is
crucial to ensure the quality of the transmitted and received
signals, and to maximize the efficiency of signal emission
and reception. To achieve this, we require a model of the
propagation environment between the RIS and SoI. We
explain both these aspects in the following sections.

Antenna Setup and Physical Layout Regarding antenna
selection, we considered canonical or pyramidal horns. Pyra-
midal horn antennas suit our setup best, as they combine E-
plane and H-plane sectoral horns for equal radiation patterns
[49]. In contrast, the beam widths in the principal planes E
and H of the conical horn are generally unequal [50, p. 15-2],
which does not meet the symmetrical characteristics required
for our setup. For our analysis, we employed a broadband
pyramidal horn antenna, specifically an LB-20180-SF, with a
frequency range of 2GHz to 18GHz and 12 dBi gain. We
chose the same horn for the receiver Rx, to ensure that we
capture primarily signals from the SoI, while minimizing any
LoS component of the Tx-Rx path.

We then modeled the physical layout between the RIS and
Tx antenna, as shown in Figure 5. The center of the RIS is
the origin of the coordinate system. The feed antenna Tx is
characterized by an offset angle θ0 measured between itself
and the normal vector to the plane of RIS, and is situated at
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a distance H from the xy-plane. Finally, the Tx is directed
at a given FBP. With this model, we employ the principles
regarding aperture efficiency, outlined in [51], in order to
establish the ideal distances between components. Specifically,
we aimed to achieve an edge taper of −10 dB to ensure that
strong diffractions do not occur at the aperture edge, thus
minimizing unwanted radiation and diffraction effects that can
degrade the quality of the transmitted signal. To facilitate this
analysis and given the configuration shown in Figure 5, all the
important geometric quantities involved are listed in Table II,
based on the equations outlined in [52].

Firstly, we model the radiation of this antenna as a cosq

radiation pattern. To determine the q value, we compared the
best fit between datapoints of the radiation pattern of the
antenna’s datasheet and the cosq model, at our target central
frequency of 6.5GHz, leading to a choice of q = 5.

Secondly, we considered the aperture’s spillover efficiency
(ηs) and its illumination efficiency (ηi). The spillover effi-
ciency quantifies the fraction of power radiated by the feed
that is captured by the reflecting aperture, compared to the total
radiated power, and is defined as shown in Equation (1). The
numerator calculates the power intercepted by the aperture,
while the denominator represents the total radiated power
integrated over a spherical surface centered at the feed.

ηs =

∫∫
A
P (r) dA∫∫

sphere P (r) dA
(1)

where P (r)dA =
H

r3

(
r20 + r2 − s2

2r0r

)2q

dxdy (2)

The illumination efficiency is related to how much of
the target surface area is not illuminated, when considering
the aperture of the feed and its distance, and is defined by
Equation (3).

ηi =
1

A

|
∫∫

A
I(x, y) dA|2∫∫

A
|I(x, y)|2 dA (3)

where I(x, y) =
Hqe

r1+qe

(
r20 + r2 − s2

2r0r

)q

(4)

The total aperture efficiency is defined by the product
ηa = ηs ·ηi. Given this we optimized the aperture efficiency by
performing sweeps over the physical configuration parameters
of our experimental setup, considering q = 5 and a conven-
tional value of qe = 1 for the element pattern power factor.
Specifically, we evaluate the efficiencies for a range of 0◦ to
50◦ for θ0, 0.2m to 1.8m for H , and ±15 cm for y0, while
keeping x0 = 0, and considering the RIS area of 18.46 cm2.

Following this, the optimal values were determined to be
H = 33 cm, θ0 = 35◦, and FBP = (0,−0.02 cm, 0). This
setup resulted in about 35% efficiency due to the minimum
possible H in the anechoic chamber. Higher efficiency would
have required H ≈ 16 cm, but this was not possible due
to physical limitations within the anechoic chamber and
potential signal interference with the SoI. Finally, the SoI was
shifted by 15◦ to prevent interference from the Tx antenna,
and the Rx was placed directly below the RIS, oriented
towards the center of the SoI.
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Fig. 6. Top-view of modeled environment for our HGR experiments.

Tx-to-Rx Propagation Model through RIS and SoI The
setup shown in Figure 6 models the RIS, Space-of-Interest
(SoI), and Tx and Rx antennas, at positions given by the
analysis explained in the previous section. The RIS consists of
N ×N elements (where N = 8), divided into L = 16 square
groups, each containing Nl = 4 elements. Each element of
the RIS is controlled by a single PIN diode, which can be in
two states, ON or OFF. Therefore, each element can switch
between two states, si, with i ∈ {1, 2} and Na = 2). For
simplicity of control, it is assumed that all elements within
the same group l are in the same state sl. The SoI, located in
front of the RIS, is divided into M = 32 equal cuboids. Each
cuboid is characterized by a reflection coefficient ηm, which
is zero when no object is present and non-zero otherwise.

The most significant components are the multiple reflections
from the transmitter to RIS and the subsequent propagation of
the signal to the SoI, where further reflections occur off the
object within the SoI, ultimately captured by the Rx antenna.
Thus, considering the states of all groups as the vector sL, the
signal at the receiver can be expressed as:

yrx =
∑

m∈[1,M ]

∑
l∈[1,L]

∑
n∈Nl

hn,m(sl, ηm)·Pt · x (5)

where Pt represents the Tx Power, x is a unit baseband with
frequency fc and h represents the channel gain. Based on [53],
h is represented by:

ϕn,m = e−j2π(dnTx+dnm+dmRx)/λ

hn,m(sl, ηm) =
λ · rn,m(sl) · ηm · √gT · gR

4π · dnTx · dnm · dmRx
· ϕn,m (6)

Here, λ is the wavelength of the signal, and gT and gR de-
note the gains of the transmitter and the receiver, respectively.
The distance from the Tx antenna to the n-th RIS element is
given by dnTx, dnm represents the distance from the n-th RIS
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element in the l-th group to the m-th spatial block, and dmRx

is the distance from the m-th spatial block to the Rx antenna.
Finally, rn,m are the reflection coefficients of the RIS elements
in a given state si, and ηm are the reflection coefficients of
each cuboid m in the SoI.

This model demonstrates that the signal at the receiver is a
function of the known state of the RIS elements, and unknown
conditions of the SoI. The following section explains how we
now manipulate these states in order to relate the received
signal to these unknown conditions to implement sensing.

B. RIS Configuration Sequences for Sensing

Given our propagation model, we now present the method
to determine a RIS configuration sequence that optimizes the
information extracted for the medium. The method protocol
operates in a periodic time frame, where each frame has
a duration δ. Instead of changing the configurations of all
RIS elements simultaneously, each RIS element sequentially
transitions between states s1 and sNa within each frame.

For the l-th group of elements, the duration in each state
is represented by the vector t̃l = (t̃l,1, . . . , t̃l,Na)

T , with∑Na
i=1 t̃l,i = δ. The complete matrix describing the time

configuration T , with dimensions K × (LNa) where K = 10
frames, is defined as:

T =
(
t1 t2 · · · tK

)T
(7)

where tk = [t1,1 t1,Na . . . tL,1 tL,Na]. In conclusion, the
received signal can be computed as:

yrx = Pt · x · T ·A · η, with Γ = T ·A (8)

where matrix A represents the channel gain, with elements
denoted by α. Each element represents the channel gain of
the RF paths from Tx to Rx through the L RIS groups in
the different states and the M spatial blocks, resulting in a
dimension of LNa ×M :

A = [α1 α2 . . . αM]

αm = [αm,1,1 . . . αm,1,Na . . . αm,L,1 . . . αm,L,Na]
T

αm,l,i =
∑
n∈Nl

λ · rn,m(sl) · ηm · √gT · gR
4π · dnTx · dnm · dmRx

· ϕn,m (9)

Thus, the characterization of the SoI, i.e., our RIS-base RF
sensing, is based on the received signal yrx, which can be
reconstructed as:

yrx = Γ · η + z (10)

where Γ ∈ CK×M represents the measurement matrix, z ∈
CK denotes additive noise, and η ∈ CM .

In other words, for a measured signal yrx, and a known
sequence of RIS configuration states T , together with the
channel gain of all unit cells, jointly represented by A, then
we can derive the reflection coefficients ηm of each cuboid in
the SoI. Thus, sensing of the space is implemented as each
reflection coefficient ηm will vary with the conditions (e.g.,
human posture or gesture) of the space.

However, the sequence of RIS configuration states Γ should
be designed such that the most information can be derived

(a) top layer (b) bottom layer

Fig. 7. 6.5GHz Unit cell design with PIN diode control

from the space. In simple terms, the signal paths between each
unit cell, the SoI, and the Tx antenna, should carry the least
correlated amount of information possible.

We achieve this optimization of Γ by adapting the method
presented by Hu et al. [26] to our two-state RIS. Specifically,
we adapt their FCAO algorithm, which is proposed for dy-
namic control of RIS elements, to minimize the mutual coher-
ence of the Γ matrix elements. We then employ the resulting
RIS control patterns in our HGR experiments, demonstrating
how the FCAO generated patterns extract richer information
from the RF medium relative to randomly applied patterns.

C. Unit Cell and RIS Tile Implementation

In this section we present our design for a 1-bit PIN diode
based unit cell, and the 64-element RIS based on this element.
All electromagnetic design and simulation was performed
through CST Studio. Our objective was to design and test a
RIS tile operating the WiFi-6E range and validate its capacity
to manipulate the electromagnetic medium for a given range
of frequencies centered on 6.5GHz, providing the hardware
necessary for our RF based HGR approach.

6.5 GHz PIN Diode Based Unit Cell Design The unit cells
were designed to be tuned to for a center frequency of
6.5GHz, corresponding to the central frequency of the WiFi-
6E band. Its’ top and bottom layer designs are shown in
Figure 7. The top layer contains a rectangular patch of 10mm
by 15mm. The total enclosing perimeter of the design is a
square with a side of 23mm. Placing two cells side by side
provides a separation of half a wavelength. Also shown are
the contacts for the D1 PIN diode used to control the phase
response. Due to its placement, the unit cell has a vertical
polarization. The control voltage for the PIN diode is applied
on the bottom layer (Figure 7b), at VCRL. A radial stub is
used to decouple the RF path from the DC path.

The PIN diode is an SMP1331-079LF, and the control
voltage applied at the ON state is of 0.8V. Given the 220Ω
value for R1 and the value of 3.3V applied at VCRL, a unit
cell in an ON state draws 15mA. Thus, if all PIN diodes
are conducting, the RIS consumes 3.16W, but the majority
of control patterns only activate approximately half the unit
cells. Resistor R2 regulates the current for the status LED,
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Fig. 8. 64 element RIS tuned for 6.5GHz, with 1-bit phase control (18.46 cm
by 18.46 cm). The status LEDs show some unit cells at the ON state.

which exists to allow for easy interpretation and validation of
the applied control pattern throughout the RIS. The LEDs can
be disabled globally, but each draws 1mA if active.

The PCB has a composite substrate, where the top layer is
a 4mm F4B substrate, and the bottom layer is a 0.5mm FR4
substrate. The cost of a tile totaled approximately 85C for
fabrication and approximately 60C for components. The PIN
diodes alone are around 50% of this cost.

8x8 RIS Tile with 6.5 GHz Unit Cell The fabricated RIS tile
is shown in Figure 8. It is composed of 64 unit cells designed
as shown in Figure 7, resulting in a square design with a side
of 18.46 cm. In Figure 8 some of the LEDs, one per unit cell,
are active, indicating that the respective unit cell is at its ON
state, which should ideally produce a 180◦ of phase shift for
the signal reflection. A total of 64 signals are needed to control
the entire tile.

The tile allows for easy scalability without compromising
ideal beamforming conditions. It was purposefully designed
such that when physically placing two tiles side by side, with
direct contact between the edges of the PCBs, the spacing
between elements at the periphery of both tiles equals then
spacing within a single tile. A multi-tile RIS can be assembled
by resorting to a mounting structure that secures each tile via
its bottom layer, as opposed to any frame based mounting
which would physically displace the relative tile positions.
We achieve this by assembling two SMD 40-pin female pin
header connectors on the bottom layer of the tile. These
connectors provide the physical mounting support, specifically
by interfacing with a smaller control board, shown in Figure 9.

The control board is 11 cm by 7 cm, and hosts eight shift-
registers. Namely, eight 74HC595PW ICs, which are 8-bit
serial-in parallel-out shift registers. We have connected these
in a daisy chain, and to set these shift registers, the control
board contains an SPI interface to an ESP32-S3-DevKitC-1.
The ESP32 sends 64 bits to the shift-registers, and issues the a

Fig. 9. Top layer of control board hosting shift registers to hold the
configuration pattern. The bottom layer contains two 40 male pin-header
connectors to interface with the tile.

latch signal which changes all unit cell configurations simulta-
neously. This synchronization prevents undesired intermediate
states which would occur if the values were sent directly to
the unit cells as their were being shifted into the tile.

We opt to implement this control board separately from the
RIS, instead of assembling the shift-registers on its bottom
layer, to mitigate any effects on beamforming performance and
to simplify the RIS by homogenizing it, which also simplifies
scalability. This separation also allows using the same control
board for other RIS designs, e.g., for different unit cell designs.
The total cost of the control board is approximately 40C.

Finally, besides allowing for the rear mounting which fa-
cilitates the physical scaling of the number of tiles, the four
interfaces at the control board’s periphery can be intercon-
nected to control additional unit cells. For example, a single
ESP32 can command the resulting 256 elements of 4 tiles as
a single larger RIS, or four parallel daisy chains can allow for
a more explicit tile-level control.

IV. EXPERIMENTAL EVALUATION

We conducted several experimental campaigns. Firstly,
we validate the RIS design, which includes characterizing
the magnitude and phase response of the fabricated unit
cell versus simulations (Section IV-A), and measuring the
beamforming capability of the RIS as a whole (Section IV-B).
Once the correct functioning of the RIS was established, we
conducted HGR related experiments, namely a preliminary
trial to determine the viability of hand gesture recognition
with our setup (Section IV-D), followed by a more extensive
data gathering to perform the CNN based classification of
gestures (Section IV-C).

Automated Data Aquisition To ensure fast and consistent
execution of all necessary experimental run configuration, data
acquisition, and post-processing tasks across experiments, we
developed software to interface with our laboratory instru-
ments. Specifically, through a laptop controlling the process,
we synchronized processes such as RIS configuration, adjust-
ing relative orientations of Tx and Rx, and measuring S21

data. After setting a particular physical and digital config-
uration of the system, we resort to a Python-based Virtual
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Fig. 10. PCB with two unit cells for validation of frequency and magni-
tude/phase response in a WR159 waveguide

Instrument Software Architecture (VISA) library to record the
corresponding S21 measurements from the VNA. Specifically,
we resort to a portable Keysight Fieldfox N9914A VNA, to
facilitate the assembly of this data-gathering setup and self-
contained experimental setups within our anechoic chamber.
The design files and control software for these components are
publicly accessible1. The following experiments (except for
the unit cell characterization via a waveguide) rely on minor
variants of this automated flow to gather all measurements.

A. Unit Cell Characterization in Waveguide

In this first experiment, we measured the true response
of the fabricated unit cell, versus the expected response as
given by CST simulation. This verification then determined
the experimental parameters for the RIS characterization
experiments (Section IV-B), namely the frequency with the
best expected steering response, and also influenced the
analysis of the HGR results (Sections IV-C and IV-D).

Experimental Setup Figure 10 shows the fabricated PCB
for use with a WR159 waveguide, with two unit cells spaced
identically to the RIS. To measure the response, we applied
the same control to both unit cells via an external voltage
source. We measured the S11 parameters of the unit cell using
a Keysight N5224B, a VNA which operates up to 43GHz.
The simulations considered a Floquet port setup and periodic
boundary condition in the 3D electromagnetic simulation
software CST, and range from 5.8GHz to 7.2GHz, given
the intended center frequency of 6.5GHz. The measurements
cover a lower range between 5GHz to 7GHz, given the
response we observed.

Experimental Results Figure 11 shows the resulting S11
measurements and respective simulations, for the ON and OFF
states. Figure 11a shows the magnitude response. At 6.5GHz
the response for both states is approximately equal, which is a
desired behavior since the reflected power should not depend

1F. Ribeiro and M. Oliveira, “SpecRF-Posture”. GitHub, Apr. 03, 2024.
https://github.com/franciscombr/SpecRF-Posture
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Fig. 11. Magnitude and phase response of unit cell measured in VNA, for
both ON and OFF states. A phase difference closest to 180◦ is achieved for
5.93GHz, but a better magnitude response is present at 5.91GHz.

on the applied control, to avoid any distortions to the desired
beamforming. However, the phase difference between states is
only 35◦, whereas the simulated response was 180◦.

Instead, the greatest phase difference of 178◦ is observed for
5.93GHz. However, at this frequency the ON state experiences
a −3.77 dB attenuation. Since the magnitude response of the
OFF state at this frequency is −1.67 dB, the disparity in
magnitude response between states could affect beamform-
ing performance. A trade-off between a balanced magnitude
response and phase difference occurs for 5.91GHz, where
a 174◦ phase difference is attained for a more approximate
magnitude response between states, and where the response
for either state is not lesser than −3 dB.

This deviation may be due to the LED which was not sim-
ulated, or to the tolerances of the PIN diode, whose datasheet
reports a typical 0.18 pF capacitance up to a maximum of
0.35 pF. However, we note that the magnitude response was
extremely sensitive to the alignment between the PCB and the
waveguide, with the phase response less so. Additionally, it
is known that the waveguide environment imposes an oblique
wave incidence condition (of approximately 38◦ in this case),
unlike the normal incidence obtained in free space conditions.

https://github.com/franciscombr/SpecRF-Posture
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Conclusion It is difficult to determine precisely the source
of the deviations from the design, or the true response that is
obtained in free space. In the absence of a better reference, for
the following tests of the RIS, we consider 5.91GHz as the
central frequency for computing beamforming control patterns.

B. RIS Characterization in Anechoic Chamber

To validate and characterize the RIS, we measure its
beamforming capabilities for several combinations of digital
beamsteering and relative orientation between the RIS and
a receiver. Following we explain the physical setup in an
anechoic chamber of approximately 7m× 7m× 3m, and the
theory behind the generated RIS control.

Experimental Setup Figure 12 shows our setup in an anechoic
chamber. We employed the LB-20180-SF horn antenna model
identified in Section III-A for both the Rx and Tx, and the
mentioned portable VNA to measure the S21 parameters. We
resort to our automated data gathering setup, using it to control
the RIS digital beamforming, the position of a rotor assembly,
and to gather data from the VNA.

We consider that the center of the coordinate system is at
the center of the RIS, that the XY plane is the broadside of
the RIS, and that the direction of the X axis is downwards.
The RIS is mounted on a rotating platform, and its X axis
is aligned with the rotational axis of this platform. The feed
horn was placed on a platform below the RIS, displaced by
25.5 cm on its X axis, and 36.5 cm on its Z axis, resulting in a
distance of 40 cm to the feed point phase center. This distance
was chosen as a compromise between the ideal distance of
20 cm, which would provide an edge tapper of −9 dB (as per
Section III-A), and a setup that would reduce the occlusion of
the RIS by the feed horn itself. The Rx antenna was placed
170 cm away from the RIS, approximating far field conditions
for the measured frequencies.

The RIS control board is attached behind the PCB, con-
taining also the ESP32 micro-controller powered by a power
bank, which receives the pattern to apply to the RIS from a
laptop via WiFi (on a 2.4GHz link). This laptop computes the
configuration based on the desired steering, according to the
following equations.

R =
√
(xc − xij)2 + (yc − yij)2 + z2c (11)

ϕij = k (R− sin(θ)xij cos(ϕ) + yij sin(ϕ)) (12)

The coordinates of the feed antenna are given by
(xc, yc, zc), which for this RIS characterization setup are
(d sin 35◦, 0, d cos 35◦), given the distance d = 400mm and
35◦angle of the feed horn towards the RIS. The coordinates of
the center of each unit cell, i, j, considering that the center of
the coordinate system is at the center of the RIS, are given by
(xij , yij) = (iCd−H

2 , jCd−W
2 ), where Cd is the dimension of

the unit cell, 23mm, and H and W are the height and width
of the RIS, both 18.4 cm.

The beam direction is given by θ and ϕ, R is thus the
Euclidean distance between each unit cell and the feed horn,
k = 2π

λ is the wave vector. For these calculations, we con-
sidered the wavelength for 5.91GHz. Finally, given the two

control levels available through the PIN diodes, we quantize
the resulting ideal phase responses, ϕij , to either zero (for
0◦ < ϕij < 180◦) or one (for 180◦ ≤ ϕij ≤ 360◦).

With this setup, and considering a frequency range from
5.3GHz to 6.5GHz (the limit of the VNA), we measured the
S21 parameters for RIS steering configurations of 0◦, ±20◦

and ±40◦, for a range of rotor orientations of ±60◦ with a
step of 2◦.

Experimental Results We first retrieved the radiation pattern
for RIS configuration of θ = 0◦, with a rotor orientation
of 0◦ (i.e., forward-facing). Our VNA resolution produced
measurements for 200 frequencies, and Figure 13 shows the
resulting radiation patterns, normalized to 0 dB.

Plotted in light gray are the responses for a subset of all
frequencies covering the measured range (specifically, from
5GHz to 7GHz with a step of 5.9MHz). We highlighted the
previously chosen frequency of 5.91GHz, and four additional
responses in a bandwidth of ±59MHz. Despite the expected
best phase response at this frequency, there is no noticeable
steering towards the desired direction of 0◦. Instead, the shown
±50MHz bandwidth centered on 6.16GHz shows the most
response to this steering configuration.

We can attribute this to our measurement of the location of
the feed point relative to the RIS center, which is difficult to
determine precisely in real-world measurements. The calcula-
tion of the phase patterns, shown in Equations (11) and (12),
depends on these coordinates as well as the presumed central
frequency. So, a likely deviation to the true value of (xc, yc, zc)
resulted in phase profiles more effective for 6.16GHz despite
the value of 5.91GHz considered for the calculations.

We then measured the radiation patterns for the RIS steering
configurations of ±20◦ and ±40◦. Given the previous con-
clusion, Figure 14 shows these profiles only for 6.16GHz
where a good steering response is confirmed. The RIS displays
a symmetric behavior, without angle skew in regards to the
steering direction, and with similar magnitude responses for
opposing steering angles (e.g. ±20◦).

Despite the good steering response for this frequency,
it may not be the best performance achievable by the
design. According to the unit cell response for 6.16GHz
seen in Figure 7, the phase difference between states is of
approximately 110◦ and there is a difference of 1.88 dB
between states. That is, although the computed phase profiles
generated a good steering response at this frequency, more
accurate measurements of the feed point or adjustments to
its position could result in a better response for 5.91GHz,
exploiting a greater phase difference between states and
therefore resulting in a more focused and power efficient
beam. Finally, we also plot the radiation pattern measured
with the RIS disabled, i.e., acting as a purely specular
reflector. This shows that there is little passive component
received at the RX, for this frequency, and that the previous
profiles are a the result of the beamsteering.

Conclusion In summary, the RIS correctly performs beam-
forming, achieving the best steering response for phase control
patterns computed assuming a central frequency of 5.91GHz.
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(a) relative TX to RIS positioning, with TX feed point posi-
tioned 400mm away from center of RIS and a 35◦ angle

(b) RX position relative to RIS mounted on
rotor

(c) rotor positioned at −60◦ relative to its
rotation axis, with relative position between
TX and RIS maintained

Fig. 12. Setup for RIS data gathering with RIS and TX mounted on a rotational platform, RX antenna on a fixed support. The VNA (not shown) and rotor
control are both connected to a latop to drive automated data gathering.
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Fig. 13. RIS radiation patterns for a beamforming configuration of θ = 0◦

and ϕ = 0◦ (i.e, steering towards the normal vector of the RIS plane) and an
angle range of ±60◦, with 5.91GHz and 6.16GHz highlighted.

Although a more pronounced steering response is observed for
6.16GHz, the RIS does demonstrate steering behavior for a
range of 5.0GHz to 6.5GHz. This means that, to a greater or
lesser extent depending on the frequency, the electromagnetic
medium is indeed influenced by the RIS in this broader band.
In other words, we can apply phase control patterns generated
by the FCAO based optimization approach, and measure the
resulting S21 for this range to drive our HGR approach.

C. RIS-based Hand Gesture Recognition Feasibility Study
The objective of this first experiment was to validate

not just the overall experimental setup, but mainly our
methodology Hand Gesture Recognition (HGR). Specifically,
we aimed to prove that measurements of the S21 parameters,
considering the channel through the SoI, reacted to the
presence of a human hand to such a degree that different
hand gestures could differentiated.
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Fig. 14. RIS radiation patterns for six beamforming configurations, for
6.16GHz, showing an effective steering capability which compensates the
rotor positioning. Also shown is the specular response (i.e., RIS off).

Experimental Setup The experimental setup was assembled
as we presented in Section III-A, within the same previ-
ously mentioned anechoic chamber, resorting to the same
pair of horn antennas, i.e., two A-INFO LB-20180 pyramidal
horns. Additionally, a ZX60-153LN-S+ low-noise amplifier
was added to the setup, to amplify the signal of the Tx antenna.

Following the model developed in Section III-A (shown
in Figure 6), Figure 15a illustrates the experimental setup
for this experiment. Data was collected for three different
hand gestures while the RIS was disabled (off ), and for four
distinct RIS steering configuration, namely 5◦, 10◦, 15◦, 20◦.
Unlike other experiments, the presence of a human volunteer
compromises the full automation of data gathering. Instead,
for each of the three gestures, data acquisition involved
manually saving the S21 parameters from the VNA after
directly sending the RIS configuration and assuring the
correct positioning of the gesture within the SoI.
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(a) side view of experimental setup using real hand (employed in Section IV-C)

(b) side view of experimental setup using model wooden hand (employed in
Section IV-D)

Fig. 15. Experimental setup for HGR with (a) real hand (b) wooden hand,
inside the anechoic chamber. Data was captured for three different hand
gestures, plus an empty SoI.

Data Gathering The collected dataset for the three distinct
gestures (open hand, two fingers, and closed hand) was
conducted through a single volunteer. For each gesture, the
hand remained static while the five configurations of the RIS
changed. This process was repeated 60 times (i.e., runs),
resulting in 900 samples (1 subject × 5 RIS configurations ×
60 runs). Additionally, noise measurements were taken without
any hand in the SoI. Specifically, ten runs were performed
for each of the five RIS configurations, resulting in 50 noise
measurements. Each sample is characterized by the number of
frequency points nres = 201, between 5.0GHz and 6.5GHz.

During data capture, the signal varied slightly, which is
expected given the difficulty in keeping the hand perfectly still.
Considering that each run included changing the configuration
and saving the data, each run took approximately 15 seconds,
resulting in a total acquisition time of about 1 hour and 15
minutes (15 seconds × 5 RIS configurations × 60 runs),
excluding re-setup and rest breaks. This data collection process
was quite exhausting, making it impractical to use a real
hand for collecting a large dataset required for HGR approach.

Experimental Results The obtained dataset was analyzed to
observe if there were distinguishable differences between the
hand gestures with this setup. Since the signal varied slightly
due to the difficulty in maintaining a static hand position,
averaging the signal would result in a loss of information.
Therefore, the raw signals were analyzed. First, we examined
the magnitude of the S21 parameters for each gesture at
a specific RIS configuration that steered the signal by 20

degrees. This approach allowed us to observe the variability
between different runs for the same gesture.

Figure 16 shows the phase response, derived from the
respective S21 parameters, for one measurement of each of
the four hand gestures. The responses shown were randomly
selected from a set of 60 measurements of the respective hand
gesture (shown on the right-hand side). We show the phase
response for five configurations of the RIS for each gesture.
Specifically, off, i.e., purely specular, and for steering angles
0◦, 10◦, 15◦, and 20◦. For brevity, we omit the magnitude
response but note that the same distinction in responses
between gestures. We illustrate only one measurement per
gesture since we observed that there was very little variation
between measurements of the same gesture. From the data in
Figure 16 it is evident that each gesture produces a distinct
phase response, leading to the conclusion that there are clear
differences in the received signal at the Rx for each gesture.

Conclusion In summary, the S21 parameters measured within
the SoI display distinct characteristics per hand gesture, which
are consistent between measurements of the same gesture,
and therefore the viability of the classification of gestures
is demonstrated. Given the high effort of data gathering, we
conduct the following experiment using a proxy hand model,
instead of a human subject.

D. RIS-based Hand Gesture Recognition Classification

Having demonstrated that the S21 parameters within the
space of interest display variations with hand gestures, we
gathered a larger dataset to allow for CNN training and
inference. The following sections present the data gathering
setup, illustrate that the FCAO based RIS configuration
provides more distinct S21 responses relative to random phase
control patterns, and show training and classification results
for two different CNN models.

Experimental Setup Analogous to the previous experiment,
Figure 15b depicts the setup with a wooden hand, where the
Rx antenna is slightly tilted upwards (relative to Figure 15a)
to focus on the center of the wooden hand. This adjustment
ensures more similarity between both setups by isolating
the region of interest, i.e., the hand and fingers, which was
shown in the previous experiment to produce S21 parameters
capable of distinguishing gestures. That is, we wish to exclude
potential response components from the wrist that compromise
the differentiation in responses we observed in Section IV-C.

Following our RIS reconfiguration method (Section III-B)
where configurations are grouped into frames, we now
consider measurement runs with 10 frames, where each frame
contains 39 distinct RIS configurations. These configurations
were applied sequentially, resulting in a total of 390
measurements of the transmission coefficients S21 per run.
The experiment was conducted twice: once with random
configurations and once with the optimized configurations
determined by the FCAO algorithm. The data data acquisition
system was adjusted to synchronize the configuration changes
in the RIS with the data collection. For each of the 39
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(a) phase response for no subject in space (i.e. noise)
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(d) phase response for shown close hand gesture

Fig. 16. Phase responses for a frequency range of 5.0GHz to 6.5GHz for several RIS configurations and hand gestures.

configurations per frame, the VNA was triggered to record
the S21 parameters, resulting in a consistent data capture of
390 total measurements per run.

Data Gathering In this second experiment, a wooden hand
was used for data collection. The collection process now
applies the FCAO algorithm, and therefore, the concept of
frames will be discussed again. The copper tape was applied
to the fingers to enhance reflection, as wood is a material
with low reflectivity [54]. The same three hand gestures
from the first experiment – Open Hand, Two Fingers, and
Close Hand – were studied. For each gesture, 115 runs
were conducted using random RIS configurations and 115
runs with optimized configurations, both across 10 frames.
Each sample contained transmission coefficients S21 across
the frequency range of 5GHz to 6.5GHz, with 201 points
per sample, as in the first experiment. The time required
to complete one run, which involved capturing data for
all 390 configurations (39 configurations per frame × 10
frames), was about 3.5 minutes, for both the random and
optimized configurations. The data acquisition time for
the random configurations was 3.5 minutes× 115 runs
= 6.7 hours per gesture, with the same duration for the
optimized configurations. Considering the three different
gestures, this resulted in a total acquisition time of around
39 hours. This extended acquisition time demonstrated the
impracticality of using a real hand for large datasets, as
it demands prolonged data collection, which is physically
exhausting for participants. The dataset created and used in

this experimental campaign has been made publicly available2.

Random vs. FCAO Optimized RIS Configurations We
again plotted the collected S21 data as images, mapping the
responses in magnitude and phase for our frequency range, as
a function of the sequence of RIS configurations. Figure 17
illustrates this for each gesture, for the random (left-hand
side) and optimized RIS (right-hand side) configurations. Axes
ranges are identical for each subplot, and the horizontal axis
represents the entire sequence of 390 configurations. Value
ranges are shown by the color bars on top, with magnitude
ranging between −35 dB to −15 dB, and phase between
±180◦. The respective hand gestures for each row of plots
are shown on the right.

For the random configuration patterns (Figures 17c, 17f
and 17i), we observe little signal variability in magnitude
across configurations, except for the last frame of the con-
figuration sequence, i.e., the very end of the sequence (config-
urations 351 to 390). The phase response also varies slightly
throughout the configuration sequence. This suggests that
having multiple frames with random configurations may not
add much value, as the information across them is redundant.
However, there is variability between gestures, particularly
in the 5.2GHz to 5.6GHz range, where closed hand results
shows less variability relative to the open hand gesture.

2M. S. F. de B. Oliveira, F. M. Ribeiro, N. Paulino and L. M. Pessoa,
“RIS Based Hand Gesture Recognition Dataset”. Zenodo, Sep. 12, 2024. doi:
10.5281/zenodo.13754235.
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Fig. 17. Phase responses for a frequency range of 5.0GHz to 6.5GHz for random RIS configuration sequences (Figures 17a, 17d and 17g), and for the
FCAO optimized sequences (Figures 17b, 17e and 17h), for each of the respective hand gestures (Figures 17c, 17f and 17i)

In contrast, the optimized patterns (Figures 17b, 17e
and 17h) reveal more variability in both magnitude and phase
across frames, indicating that more information is captured
from the space of interest when using the configuration pattern
computed by our FCAO implementation. Additionally, differ-
ences between gestures are more pronounced. For example,
between 6.0GHz and 6.5GHz, the magnitude response is
more attenuated relative to the random configuration sequence,
and between the optimized cases, the attenuation is greater for
closed hand relative to open hand in the same range.

For clarity, note that these plots show the average responses
for each gesture, considering all 115 measurement runs per
gesture. We present the averages directly, as opposed to
analyzing specific chosen measurements runs per gesture since
we observed very little variability for different measurements
of the same gesture. For instance, considering the magnitude,
and each set of 115 responses of the same set of measurements
(i.e., same gesture and RIS configuration sequence), we verify
that the mean of the absolute differences of a gesture relative
to the average response of that gesture ranges between 0.2 dB

and 1.2 dB. Given the absolute range of −35 dB to −15 dB.
In other words, there is little variability in data between

different runs for the same gesture, likely due to the anechoic
environment and use of an immobile hand. Therefore, data
augmentation techniques were employed to ensure a more
robust dataset for training a neural network for hand gesture
recognition.

Data Augmentation for Machine Learning We augmented
our data in two ways. Firstly, we had observed during the
experiments on the human hand subject that slight adjustments
or minor motion of the hand position was enough to cause
response changes. Therefore, additional measurements were
taken with the wooden hand placed in 8 different minor
variations for each gesture. Given the conclusion regarding
variability between measurement of the same gesture we have
just presented above, we determined that repeating measure-
ments per gesture did not significantly contribute to new
information. Therefore, only a single measurement was taken
for each new orientation.
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Fig. 18. Training epochs for CNN model #1, for both types of collected data

Instead, as our second technique for data augmentation,
for each new variant position, we replicated the respective
measurement 115 times, adding adding random white noise
to each replica, with a mean of 0 and a standard deviation
randomly chosen from [0.08, 0.1, 0.15, 0.2] as described in
[55]. This approach ensured a more robust dataset, allowing
the neural network to learn patterns beyond the limited
original data and avoid overfitting. This process resulted in
a total of 1035 samples per gesture for both random and
optimized configurations (115 runs × 9 orientations). With
three gestures, the final dataset comprised 3105 samples
for random configurations and 3105 samples for optimized
configurations, where each sample corresponds to an image
used for CNN learning and classification.

CNN Classification with Model #1 The first CNN model was
adapted from the one presented by Hu et al. [26], from where
we also based our FCAO implementation. We employ the same
model here to arrive at a comparison of performance given the
different input data collected. Specifically, in this reference
paper, only the information at the operating frequency of
the RIS was used for classification. In our case, due to the
characterization results of the unit cell and RIS, this frequency
fc = 5.91GHz as we explained above (Section IV-A. Thus
this model relies only on a single frequency and furthermore
takes only the average of the response per each configuration
frame (i.e., it considers the average of the responses of all
configurations within a frame). In our case, and considering
the inputs are the only real components of the complex values
of the S21 parameters, resulting in in a feature vector with
dimension (1, 10).

Regarding architecture, the neural network consists of three
fully connected layers: an initial layer with 64 neurons, a
hidden layer with 32 neurons, both using the ReLU activation
function and an output layer with softmax activation. The
dataset was split into 80% for training, 10% for validation,
and 10% for testing. We implemented the same model and
trained it with both of our data subsets (i.e., S21 data for
random and optimized configuration sequences).

During training, shown in Figure 18, it is evident that
in the initial epochs, the model converges faster with the
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Fig. 19. Gesture recognition accuracy for the CNN architecture utilizing
only S21 information for a frequency of 5.91GHz using both random
configurations or the FCAO optimized configurations.

random configurations than with the optimized ones. This
suggests that the optimized configuration contains more com-
plex information, making it harder to learn at first. However,
as training progressed the optimized configuration showed
improved accuracy, achieving around 5× smaller loss. This
pattern was also observed in the study by Hu et al. [26].

Figure 19 presents the confusion matrices for both
configurations, demonstrating an advantage for the optimized
setup. This confirms that the optimized configuration matrix,
designed with low average mutual coherence, can achieve
superior accuracy in gesture recognition. Specifically, the
optimized configuration resulted in a 99.67% recognition
accuracy, providing a 3.53% improvement compared to the
random configuration, which achieved 96.14%.

CNN Classification with Model #2 The architecture of our
second CNN is presented in Figure 20. We now consider two
channels, the magnitude and phase responses, represented as
the image plots we have previously shown. That is, this model
considers broadband information from 5.0GHz to 6.5GHz,
and also the response of each individual configuration of the
sequence, rather than an average response per frame. Thus the
resulting dimension of the input layer is two feature vectors
with dimensions (201, 390), and the output layer consists
of three nodes for the hand gestures to be classified. This
architecture allows the network to learn features from both
the magnitude and phase components of the S21 parameters,
potentially capturing distinct and complementary information.

The training for this network is shown in Figure 21, once
again for both types of configuration strategies. In this case,
the optimized case produces a lower loss per epoch even from
the start of the training process. However, both configuration
methods converge to a similar loss. That is, even though the
gains from FCAO are less evident for this model and respective
input data, its use still permits a faster learning convergence.

The resulting classification accuracies for both of our data
subsets (i.e., random and optimized sequences) are shown
in Figure 22. Both the random and optimized configura-
tions achieved high recognition accuracies. The average ac-
curacy for the dataset retrieved using random configurations
is 99.047%, which increases minimally to 99.057% for the
optimized configuration dataset. This smaller increase relative
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Fig. 22. Gesture recognition accuracy for the CNN architecture utilizing
broadband information from 5.0GHz to 6.5GHz using both random config-
urations or the FCAO optimized configurations.

to the previous CNN model again suggests that optimizing the
RIS configuration yields little benefit, if also combined with
data retrieved over a broader range of frequencies.

We can briefly justify this based on how the formulation of
the channel and the FCAO algorithm operate. Underlying the
approach are compressive sensing principles, where the FCAO
algorithm can provide benefits if the number of measurements
K is ideally much smaller than the number of distinct spatial
regions of interest M . In other words, for the first CNN model
with an input size of (1,K = 10) for our case where M = 32,

these conditions are minimally satisfied.

However, in the second approach, by not averaging the
signals across frames, we leverage all 390 distinct signals,
which results in K = 390, greatly exceeding M . This
substantial increase in measurements makes the application
of the FCAO algorithm less impactful regarding the increase
of information extracted from the channel. Both configurations
achieve similarly high performance, demonstrating that with
such a large number of measurements, the choice of configu-
ration has minimal impact on the classification results.

In other words, while the use of an optimized configuration
using FCAO increases the information captured from a
narrowband signal, at the cost of the computational effort
of determining this configuration, we achieve a similar level
of information by capturing magnitude and phase data for a
broader frequency band.

Conclusion We have successfully implemented an RF-based
HGR approach, relying on our own RIS design. We have
shown that S21 data for a bandwidth of 1.5GHz within
the WiFi-6E range provides sufficient information for gesture
classification, even for a RIS design with only two control
states per unit cell.

Regarding maximizing the information that can be extracted
from the channel, Hu et al. [26] demonstrated this through
the FCAO algorithm for a 2-bit RIS, achieving a 14.6%
accuracy improvement in their Human Posture Recognition
(HPR) setup, relative to random configurations sequences.
Although not directly comparable, we achieve an analogous
3.53% increase in classification accuracy for our 3 gestures
in our HGR setup using the same approach. The difference in
accuracy increase can likely be attributed not just to different
setups, but especially to the increased number of possible
configuration states in a 2-bit RIS, and respective control of the
RF medium. However, we have demonstrated that optimized
configurations can still improve performance even for a 1-bit
RIS, a smaller SoI, and different classification task. Moreover,
we have shown that equivalent classification performances can
be achieved even with a random sequence of RIS configuration
states if a larger amount of RF data is directly collected from
the channel.
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V. CONCLUSION

In this work, we have demonstrated a Hand Gesture Recog-
nition (HGR) approach that is capable of classifying three
distinct human hand gestures, relying only on RF data re-
trieved from a channel including the SoI within which the
human hand target is located. The channel is a so called smart
radio environment, as it includes a Reconfigurable Intelligent
Surface (RIS) with which the response of the channel can be
controlled. In this way, the information extracted from the SoI
enriched, since different RIS configurations result in distinct
S21 parameters.

We collected and published a large data set for HGR in
an anechoic chamber setup, for three possible human hand
gestures, and for a frequency range of 5.0GHz to 6.5GHz.
For two Convolutional Neural Network (CNN) models, and
two strategies for RIS reconfiguration, we have demonstrated
a classification accuracy above 90%. Furthermore, we have
demonstrated this using our own hardware designs for a RIS
tile, and supporting control eletronics, targeting the WiFi-
6E range. Thus, we have advanced the state of the art on
RF based solutions for Human Activity Recognition (HAR),
specifically within the context of emergent sixth generation
communications.

Our RIS design is a 8x8 tile using a PIN diode based unit
cell was validated in anechoic chamber environment, where
we analyzed the performance for several frequencies and
steering angles. Despite a deviation from the intended central
frequency, we demonstrated successful steering capabilities
at 6.16GHz, for a signal emitted by a feed horn located
40 cm away from the RIS. Our design will be available as
open-source, accelerating research on RIS implementations
and applications for WiFi-6E networks.

Regarding future work from a sensing perspective, we are
assembling a setup with four tiles in order to achieve a total
of 256 units cells. With this larger RIS, we expect that the
HGR approach can be improved by potentially quadrupling
the information from the channel. Due to a larger RIS, we can
also consider a larger Space-of-Interest (SoI), and thus perform
full body HPR. From a hardware design and communication
perspective, We will also evaluate the improved steering capa-
bilities with this larger RIS, and will also explore the multi-
beam capabilities afforded by a tile level control. Finally, we
will iterate on the unit cell design to mitigate deviations from
the intended central frequency, which may include focusing
on a 2-bit control, and also consider RIS designs for FR2
frequencies.
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