Pular para o conteúdo
Início » RADIAÇÃO: UM IMPACTO POLITRAUMÁTICO QUE LEVA A LESÕES EM MÚLTIPLOS ÓRGÃOS (5/5)

RADIAÇÃO: UM IMPACTO POLITRAUMÁTICO QUE LEVA A LESÕES EM MÚLTIPLOS ÓRGÃOS (5/5)

Referências

  1. Ozasa K, Shimizu Y, Suyama A, Kasagi F, Soda M, Grant EJ, Sakata R, Sugiyama H, Kodama K. Studies of the mortality of atomic bomb survivors, Report 14, 1950–2003: an overview of cancer and noncancer diseases. Radiat Res. 2012;177(3):229–243. [PubMed] [Google Scholar]
  2. Bentzen SM. Preventing or reducing late side effects of radiation therapy: radiobiology meets molecular pathology. Nat Rev Cancer. 2006;6(9):702–713. [PubMed] [Google Scholar]
  3. Hall EJ, Giacca AJ. Radiobiology for the radiologist. 6. Philadelphia: Lippincott Williams & Wilkins; 2006. pp. 252–268. [Google Scholar]
  4. Fliedner TM, Graessel D, Meineke V, Dorr H. Pathological principles underlying the blood cell concentration responses used to assess the severity of effect after accidental whole-body radiation exposure: an essential basis for an evidence-based clinical triage. Exp Hematol. 2007;35(4 Suppl 1):8–16. [PubMed] [Google Scholar]
  5. MacNaughton WK. Review article: new insights into the pathologenesis of radiation-induced intestinal dysfunction. Aliment Pharmacol Ther. 2000;14(5):523–528. [PubMed] [Google Scholar]
  6. Meistrich ML, Kangasniemi M. Hormone treatment after ionizingradiation stimulates recovery of rat spermatogenesis from surviving spermatogonia. J Androl. 1997;18(1):80–87. [PubMed] [Google Scholar]
  7. Mikkelsen RB, Wardman P. Biological chemistry of reactive oxygen and nitrogen and radiation-induced signal transduction mechanisms. Oncogene. 2003;22(37):5734–5754. [PubMed] [Google Scholar]
  8. Pena LA, Fuks Z, Kolesnick RN. Radiation-induced apoptosis of endothelial cells in the murine central nervous system: protection by fibroblast growth factor and sphingomyelinase deficiency. Cancer Res. 2000;60(2):321–327. [PubMed] [Google Scholar]
  9. Rodemann HP, Blaese MA. Responses of normal cells to ionizing radiation. Semin Radiat Oncol. 2007;17(2):81–88. [PubMed] [Google Scholar]
  10. Gorbunov NV, Kiang JG. Ghrelin therapy decreases incidents of intracranial hemorrhage in mice after whole-body ionizing irradiation combined with burn trauma. Int J Mol Sci. 2017;18(8):E1693. [PMC free article] [PubMed] [Google Scholar]
  11. Acharya MM, Christie L-A, Lan ML, Limoli CL. Comparing the functional consequences of human stem cell transplantation in the irradiated rat brain. Cell Transplant. 2013;22(1):55–64. [PMC free article] [PubMed] [Google Scholar]
  12. Kiang JG. Adult mesenchymal stem cells and radiation injury. Health Phys. 2016;111(2):198–203. [PMC free article] [PubMed] [Google Scholar]
  13. Coleman CN, Stone HB, Moulder JE, Pellmar TC. Medicine. Modulation of radiation injury. Science. 2004;304(5671):693–694. [PubMed] [Google Scholar]
  14. Yang R, Han X, Uchiyama T, Watkins SK, Yaguchi A, Delude RL, Fink MP. IL-6 is essential for development of gut barrier dysfunction after hemorrhagic shock and resuscitation in mice. Am J Physiol Gastrointest Liver Physiol. 2003;285(3):G621–G629. [PubMed] [Google Scholar]
  15. Kiang JG, Jiao W, Cary LH, Mog SR, Elliott TB, Pellmar TC, Ledney GD. Wound trauma increases radiation-induced mortality by activation of iNOS pathway and elevation of cytokine concentrations and bacterial infection. Radiat Res. 2010;173(3):319–332. [PMC free article] [PubMed] [Google Scholar]
  16. Somosy Z, Horvath G, Telbisz A, Rez G, Palfia Z. Morphological aspects of ionizing radiation response of small intestine. Micron. 2002;33(2):167–178. [PubMed] [Google Scholar]
  17. Li X, Cui W, Hull L, Smith JT, Kiang JG, Xiao M. Effects of low-to-moderate doses of gamma radiation on mouse hematopoietic system. Radiat Res. 2018;190(6):612–622. [PubMed] [Google Scholar]
  18. Barabanova AV. Significance of beta-radiation skin burns in Chernobyl patients for the theory and practice of radiopathology. Vojnosanit Pregl. 2006;63(5):477–480. [PubMed] [Google Scholar]
  19. Meineke V. The role of damage to the cutaneous system in radiation-induced multi organ failure. BJR Suppl. 2005;27:85–99. [Google Scholar]
  20. Sumpio BE, Riley JT, Dardik A. Cells in focus: endothelial cell. Int J Biochem Cell Biol. 2002;34(12):1508–1512. [PubMed] [Google Scholar]
  21. Gaugler MH. A unifying system: does the vascular endothelium have a role to play in multi-organ failure following radiation exposure? In: Radiation-induced multi-organ involvement and failure: a challenge for pathogenetic, diagnostic and therapeutic approaches and research; 2005. p. 100–5.
  22. Asano S. Multi-organ involvement: lessons from the experience of one victim of the Tokai-mura criticality accident. In: Radiation-induced multi-organ involvement and failure: a challenge for pathogenetic, diagnostic and therapeutic approaches and research; 2005. p. 1–10.
  23. Meineke V, Fliedner TM. Radiation-induced multi-organ and failure: challenges for radiation accident medical management and future research. In: Radiation-induced multi-organ involvement and failure: a challenge for pathogenetic, diagnostic and therapeutic approaches and research; 2005. p. 196–200.
  24. Hirama T, Akashi M. Multi-organ Involvement in the patient who survived the Tokai-mura criticality accident. In: Radiation-induced multi-organ involvement and failure: a challenge for pathogenetic, diagnostic and therapeutic approaches and research; 2005. p. 17–20.
  25. Bonetti PO, Lerman LO, Napoli C, Lerman A. Statin effects beyond lipid lowering—are they clinically relevant? Eur Heart J. 2003;24(3):225–248. [PubMed] [Google Scholar]
  26. Kiang JG, Garrison BR, Burns TM, Zhai M, Dews IC, Ney PH, Cary LH, Fukumoto R, Elliott TB, Ledney GD. Wound trauma alters ionizing radiation dose assessment. Cell Biosci. 2012;2(1):20. [PMC free article] [PubMed] [Google Scholar]
  27. Kiang JG, Smith JT, Anderson MN, Elliott TB, Gupta P, Balakathiresan NS, Maheshwari RK, Knollmann-Ritschel B. Hemorrhage enhances cytokine, complement component 3, and caspase-3, and regulates microRNAs associated with intestinal damage after whole-body gamma-irradiation in combined injury. PLoS ONE. 2017;12(9):e0184393. [PMC free article] [PubMed] [Google Scholar]
  28. Swift JM, Smith JT, Kiang JG. Ciprofloxacin therapy results in mitigation of ATP loss after irradiation combined with wound trauma: preservation of pyruvate dehydrogenase and inhibition of pyruvate dehydrogenase kinase 1. Radiat Res. 2015;183(6):684–692. [PubMed] [Google Scholar]
  29. Kiang JG, Zhai M, Bolduc DL, Smith JT, Anderson MN, Ho C, Lin B, Jiang S. Combined therapy of pegylated G-CSF and Alxn4100TPO improves survival and mitigates acute radiation syndrome after whole-body ionizing irradiation alone and followed by wound trauma. Radiat Res. 2017;188(5):476–490. [PMC free article] [PubMed] [Google Scholar]
  30. Ledney GD, Elliott TB. Combined injury: factors with potential to impact radiation dose assessments. Health Phys. 2010;98(2):145–152. [PubMed] [Google Scholar]
  31. Kiang JG, Ledney GD. Skin Injuries reduce survival and modulate corticosterone, C-reactive protein, complement component 3, IgM, and prostaglandin E2 after whole-body reactor-produced mixed field (n + -Photons) irradiation. Oxid Med Cell Longev. 2013;2013:821541. [PMC free article] [PubMed] [Google Scholar]
  32. Gengozian N, Taylor T, Jameson H, Lee ET, Good RA, Epstein RB. Radiation-induced hemopoietic death in mice as a function of photon energy and dose rate. Radiat Res. 1986;105(3):320–327. [PubMed] [Google Scholar]
  33. Kiang JG, Smith JT, Anderson MN, Swift JM, Gupta P, Balakathiresan N, Maheshwari RK. Hemorrhage exacerbates radiation effects on survival, leukocytopenia, thrombopenia, erythropenia, bone marrow cell depletion and hematopoiesis, and inflammation-associated microRNAs expression in kidney. PLoS ONE. 2015;10(9):e0139271. [PMC free article] [PubMed] [Google Scholar]
  34. Lya G, Ekhtiar A, Saour G. Effects of lethal dose of c-radiation and partial body hyperthermia on Wistar rats. Int J Hyperthermia. 2015;31(5):460–463. [PubMed] [Google Scholar]
  35. Iijima S. Pathology of atomic bomb casualties. Acta Pathol Jpn. 1982;32(Suppl. 2):237–270. [PubMed] [Google Scholar]
  36. Kishi HS. Effects of the “special bomb”: recollection of a neurosurgeon in Hiroshima. Neurosurgery. 2000;47(2):441–446. [PubMed] [Google Scholar]
  37. Ledney GD, Elliott TB, Moore MM. Modulations of mortality by tissue trauma and sepsis in mice after radiation injury. In: Mossman KL, Mills WA, editors. The biological basis of radiation protection practice. Baltimore, MD: Williams and Wilkins; 1992. pp. 202–217. [Google Scholar]
  38. Ma Q, Cai JL, Pan XJ, Du L, Yang XY, Liu YX, Zhang QL, Cui YF. Effects of neuro-immuno-modulation on healing of wound combined with local radiation injury in rats. Chin J Traumatol. 2017;20(5):270–274. [PMC free article] [PubMed] [Google Scholar]
  39. Alpen EL, Sheline GE. The combined effects of thermal burns and whole body X irradiation on survival time and mortality. Ann Surg. 1954;140(1):113–118. [PMC free article] [PubMed] [Google Scholar]
  40. Jacob A, Shah KG, Wu R, Wang P. Ghrelin as a novel therapy for radiation combined injury. Mol Med. 2010;16(3–4):137–143. [PMC free article] [PubMed] [Google Scholar]
  41. Shah KG, Wu R, Jacob A, Blau SA, Ji Y, Dong W, Marini CP, Ravikumar TS, Coppa GF, Wang P. Human ghrelin ameliorates organ injury and improves survival after radiation injury combined with severe sepsis. Mol Med. 2009;15(11–12):407–414. [PMC free article] [PubMed] [Google Scholar]
  42. Valeriote FA, Baker DG. The combined effects of thermal trauma and x-ray radiation on early mortality. Radiat Res. 1964;22:693–702. [PubMed] [Google Scholar]
  43. Korlof B. Infection of burns, I. A bacteriological and clinical study of 99 cases. II. Animal experiments: burns and total body x-ray radiation. Acta Chir Scand. 1956;Suppl209:1–144. [PubMed] [Google Scholar]
  44. Brooks JW, Evans EI, Ham WT, Jr, Reid JD. The influence of external body radiation on mortality from thermal burns. Ann Surg. 1952;136(3):533–545. [PMC free article] [PubMed] [Google Scholar]
  45. Reid JD, Brooks JW, Ham WT, Evans EI. The influence of X-radiation on mortality following thermal flash burns: the site of tissue injury as a factor determining the type of invading bacteria. Ann Surg. 1955;142(5):844–850. [PMC free article] [PubMed] [Google Scholar]
  46. Ledney GD, Stewart DA, Exum ED, Sheehy PA. Skin wound-enhanced survival and myelocytopoiesis in mice after whole-body ionizing radiation. Acta Radiol Oncol. 1981;20(1):29–38. [PubMed] [Google Scholar]
  47. Koenig KL, Goans RE, Hatchett RJ, Mettler FA, Jr, Schumacher TA, Noji EK, Jarrett DG. Medical treatment of radiological casualties: current concepts. Ann Emerg Med. 2005;45(6):643–652. [PubMed] [Google Scholar]
  48. Lausevic Z, Lausevic M, Trbojevic-Stankovic J, Krstic S, Stojimovic B. Predicting multiple organ failure in patients with severe trauma. Can J Surg. 2008;51(2):97–102. [PMC free article] [PubMed] [Google Scholar]
  49. Zou Z, Sun H, Su Y, Cheng T, Luo C. Progress in research on radiation combined injury in China. Radiat Res. 2008;169(6):722–729. [PubMed] [Google Scholar]
  50. Ledney GD, Exum ED, Sheehy PA. Survival enhanced by skin-wound trauma in mice exposed to 60Co radiation. Experientia. 1981;37(2):193–194. [PubMed] [Google Scholar]
  51. Ledney GD, Exum ED, Stewart DA, Gelston HM, Jr, Weinberg SR. Survival and hematopoietic recovery in mice after wound trauma and whole-body irradiation. Exp Hematol. 1982;10(Suppl 12):263–278. [Google Scholar]
  52. Dynlacht JR, Garrett J, Joel R, Lane K, Mendonca MS, Orschell CM. Further characterization of the mitigation of radiation lethality by protective wounding. Radiat Res. 2017;187(6):732–742. [PMC free article] [PubMed] [Google Scholar]
  53. Kiang JG, Smith JT, Agravante NG. Geldanamycin analog 17-DMAG inhibits iNOS and caspases in gamma irradiated human T cells. Radiat Res. 2009;172(3):321–330. [PubMed] [Google Scholar]
  54. Gorbunov NV, Kiang JG. Up-regulation of autophagy in the small intestine Paneth cell in response to total body γ-irradiation. J Pathol. 2009;219(2):242–252. [PubMed] [Google Scholar]
  55. Szabo C, Ischiropoulos H, Radi R. Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat Rev. 2007;6(8):622–680. [PubMed] [Google Scholar]
  56. Kiang JG, Tsen KT. Biology of hypoxia. Chin J Physiol. 2006;49(5):223–233. [PubMed] [Google Scholar]
  57. Hayashi T, Morishita Y, Kudo Y, Kusunoki Y, Hayashi I, Kasagi F, Hakoda M, Kyoizumi S, Nakachi K. Long-term effects of radiation dose on inflammatory markers in atomic bomb survivors. Am J Med. 2005;118(1):83–86. [PubMed] [Google Scholar]
  58. Peterson VM, Adamovicz JJ, Elliott TB, Moore MM, Madonna GS, Jackson WE, III, Ledney GD, Gause WC. Gene expression of hematoregulatory cytokines is elevated endogenously after sublethal gamma irradiation and is differentially enhanced by therapeutic administration of biologic response modifiers. J Immunol. 1994;153(5):2321–2330. [PubMed] [Google Scholar]
  59. Singh VK, Grace MB, Jacobsen KO, Chang CM, Parekh VI, Inal CE, Shafran RL, Whitnall AD, Kao TC, Jackson WE, III, Whitnall MH. Administration of 5-androstenediol to mice: pharmacokinetics and cytokine gene expression. Exp Mol Pathol. 2008;84(2):178–188. [PubMed] [Google Scholar]
  60. Gourmelon P, Marquette C, Agay D, Mathieu J, Clarencon D. Involvement of the central nervous system in radiation-induced multi-organ dysfunction and/or failure. Br Inst Radiol. 2005;27(suppl):62–68. [Google Scholar]
  61. Dlaska M, Weiss G. Central role of transcription factor NF-IL6 for cytokines and iron-mediated regulation of murine inducible nitric oxide synthase expression. J Immunol. 1999;162(10):6171–6177. [PubMed] [Google Scholar]
  62. Han X, Fink MP, Delude RL. Proinflammatory cytokines cause NO*-dependent and -independent changes in expression and localization of tight junction proteins in intestinal epithelial cells. Shock. 2003;19(3):229–237. [PubMed] [Google Scholar]
  63. Mazzon E, De Sarro A, Caputi AP, Cuzzocrea S. Role of tight junction derangement in the endothelial dysfunction elicited by exogenous and endogenous peroxynitrite and poly(ADP-ribose) synthetase. Shock. 2002;18(5):434–439. [PubMed] [Google Scholar]
  64. Pogozelski WK, Xapsos MA, Blakely WF. Quantitative assessment of the contribution of clustered damage to DNA double-strand breaks induced by 60Co gamma rays and fission neutrons. Radiat Res. 1999;151(4):442–448. [PubMed] [Google Scholar]
  65. Burma S, Chen BP, Chen DJ. Role of non-homologous and end joining (NHEJ) in maintaining genomic integrity. DNA Repair (Amst.) 2006;5(9–10):1042–1048. [PubMed] [Google Scholar]
  66. Olive PL. Impact of the comet assay in radiobiology. Mutat Res. 2007;681(1):3–23. [PubMed] [Google Scholar]
  67. Kuhne M, Riballo E, Rief N, Rothkamm K, Jeggo PA, Lobrich M. A double-strand break repair defect in ATM-deficient cells contributes to radiosensitivity. Cancer Res. 2004;64(2):500–508. [PubMed] [Google Scholar]
  68. Riballo E, Kuhne M, Rief N, Doherty A, Smith GC, Recio MJ, Reis C, Dahm K, Fricke A, Kremler A, Parker AR, Jackson SP, Gennery A, Jeggo PA, Lobrich M. A pathway of double-strand break rejoining dependent upon ATM, Artemis, and proteins locating to gamma-H2AX foci. Mol Cell. 2004;16(5):715–724. [PubMed] [Google Scholar]
  69. Rogakou EP, Nieves-Neira W, Boon C, Pommier Y, Bonner WM. Initiation of DNA fragmentation during apoptosis induces phosphorylation of H2AX histone at serine 139. J Biol Chem. 2000;275(13):9390–9395. [PubMed] [Google Scholar]
  70. Houtgraaf JH, Versmissen J, van der Giessen WJ. A concise review of DNA damage checkpoints and repair in mammalian cells. Cardiovasc Revasc Med. 2006;7(3):165–172. [PubMed] [Google Scholar]
  71. Scherthan H, Hieber L, Braselmann H, Meineke V, Zitzelsberger H. Accumulation of DSBs in gamma-H2AX domain fuel chromosomal aberration. Biochem Biophys Res Commun. 2008;371(4):694–697. [PubMed] [Google Scholar]
  72. Kiang JG, Fukumoto R. Ciprofloxacin increases survival after ionizing irradiation combined injury: gamma-H2AX formation, cytokine/chemokine, and red blood cells. Health Phys. 2014;106(6):720–726. [PMC free article] [PubMed] [Google Scholar]
  73. Moroni M, Maeda D, Whitnall MH, Bonner WM, Redon CE. Evaluation of the gamma-H2AX assay for radiation biodosimetry in a swine model. Int J Mol Sci. 2013;14(7):14119–14135. [PMC free article] [PubMed] [Google Scholar]
  74. Redon CE, Nakamura AJ, Gouliaeva K, Rahman A, Blakely WF, Bonner WM. Q(γ-H2AX), an analysis method for partial-body radiation exposure using γ-H2AX in nonhuman primate lymphocytes. Radiat Meas. 2011;46(9):877–881. [PMC free article] [PubMed] [Google Scholar]
  75. Fernandez-Capetillo O, Lee A, Nussenzweig M, Nussenzweig A. H2AX: the histone guardian of the genome. DNA Repair (Amst). 2004;3(8–9):959–967. [PubMed] [Google Scholar]
  76. Rothkamm K, Lobrich M. Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proc Natl Acad Sci (USA) 2003;100(9):5057–5062. [PMC free article] [PubMed] [Google Scholar]
  77. Kurz EU, Lees-Miller SP. DNA damage-induced activation of ATM and ATM-dependent signaling pathways. DNA Repair (Amst). 2004;3(8–9):889–900. [PubMed] [Google Scholar]
  78. Habraken Y, Piette J. NF-kappaB activation by double-strand breaks. Biochem Pharmacol. 2006;72(9):1132–1141. [PubMed] [Google Scholar]
  79. Janssens S, Tschopp J. Signals from within: the DNA-damage-induced NF-kappaB response. Cell Death Differ. 2006;13(5):773–784. [PubMed] [Google Scholar]
  80. Kiang JG. Overview of biological effects of ionizing radiation combined injury. NATO 2012;STO-MP-HFM-223 5-1-17.
  81. Epperly MW, Sikora CA, DeFilippi SJ, Gretton JA, Zhan Q, Kufe DW, Greenberger JS. Managanese superoxide dismutase (SOD2) inhibits radiation-induced apoptosis by stabilization of the mitochondrial membrane. Radiat Res. 2002;157(5):568–577. [PubMed] [Google Scholar]
  82. Hayashi T, Hayashi I, Shinohara T, Morishita Y, Nagamura H, Kusunoki Y, Kyoizumi S, Seyama T, Nakachi K. Radiation-induced apoptosis of stem/progenitor cells in human umbilical cord blood is associated with alterations in reactive oxygen and intracellular pH. Mutat Res. 2004;556(1–2):83–91. [PubMed] [Google Scholar]
  83. Dent P, Reardon DB, Park JS, Bowers G, Logsdon C, Valerie K, Schmidt-Ullrich R. Radiation-induced release of transforming growth factor alpha activates the epidermal growth factor receptor and mitogen-activated protein kinase pathway in carcinoma cells, leading to increased proliferation and protection from radiation-induced cell death. Mol Biol Cell. 1999;10(8):2493–2506. [PMC free article] [PubMed] [Google Scholar]
  84. Kao GD, Jiang Z, Fernandes AM, Gupta AK, Maity A. Inhibition of phosphatidylinositol-3-OH kinase/Akt signaling impairs DNA repair in glioblastoma cells following ionizing radiation. J Biol Chem. 2007;282(29):21206–21212. [PMC free article] [PubMed] [Google Scholar]
  85. Astsaturov I, Cohen RB, Harari P. Targeting epidermal growth factor receptor signaling in the treatment of head and neck cancer. Expert Rev Anticancer Ther. 2006;6(9):1179–1193. [PubMed] [Google Scholar]
  86. Lee ER, Kim JY, Kang YJ, Kim BW, Choi HY, Jeong MY, Cho SG. Interplay between PI3 K/Akt and MAPK signaling pathways in DNA-damaging drug-induced apoptosis. Biochim Biophys Acta. 2006;1763(9):958–968. [PubMed] [Google Scholar]
  87. Kim BJ, Ryu SW, Song BJ. JNK- and p38 kinase-mediated phosphorylation of Bax leads to its activation and mitochondrial translocation and to apoptosis of human hepatoma HepG2 cells. J Biol Chem. 2006;281(30):21256–21265. [PubMed] [Google Scholar]
  88. Lockshin RA, Zakeri Z. Apoptosis, autophagy, and more. Int J Biochem Cell Biol. 2004;36:2405–2419. [PubMed] [Google Scholar]
  89. Fengsrud M, Sneve ML, Overbye A, Seglen PO. Structural aspects of mammalian autophagy. In: Klionsky DJ, editor. autophagy. Georgetown: Landes Bioscience; 2004. pp. 11–25. [Google Scholar]
  90. Kundu M, Thompson CB. Autopagy: basic principles and relevance to disease. Annu Rev Pathol Mecha Dis. 2008;3:247–255. [Google Scholar]
  91. Schmidt D, Munz C. Innate and adaptive immunity through autophagy. Immunity. 2007;27:11–21. [PMC free article] [PubMed] [Google Scholar]
  92. Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell. 2004;6(4):463–477. [PubMed] [Google Scholar]
  93. Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 2000;19(2):5720–5728. [PMC free article] [PubMed] [Google Scholar]
  94. Ohsumi Y. Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Biol. 2001;2(3):211–216. [PubMed] [Google Scholar]
  95. Crighton D, Wilkinson S, O’Prey J, Syed N, Smith P, Harrison PR, Gasco M, Garrone O, Crook T, Ryan KM. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell. 2006;126(1):121–134. [PubMed] [Google Scholar]
  96. Paglin S, Hollister T, Delohery T, Hackett N, McMahill M, Sphicas E, Domingo D, Yahalom J. A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles. Cancer Res. 2001;61(2):439–444. [PubMed] [Google Scholar]
  97. Tanida I, Ueno T, Kominami E. LC3 conjugation system in mammalian autophagy. Int J Biochem Cell Biol. 2004;36(12):2503–2518. [PMC free article] [PubMed] [Google Scholar]
  98. Packey CD, Ciorba MA. Microbial influences on the small intestinal response to radiation injury. Curr Opin Gastroenterol. 2010;26(2):88–94. [PMC free article] [PubMed] [Google Scholar]
  99. Stryer L. Biochemistry. New York: W.H. Freeman; 1980. [Google Scholar]
  100. Gorbunov NV, Elliott TB, McDaniel DP, Zhai M, Liao P-J, Kiang JG. Mitophagy and mitochondrial remodeling in mouse mesenchymal stromal cells following a challenge with Staphylococcus epidermidis. J Cell Mol Med. 2015;19(5):1133–1150. [PMC free article] [PubMed] [Google Scholar]
  101. Ji LL. Redox signaling in skeletal muscle: role of aging and exercise. Adv Physiol Educ. 2015;39(4):352–359. [PubMed] [Google Scholar]
  102. Comelli M, Di Pancrazio F, Mavelli I. Apoptosis is induced by decline of mitochondrial ATP synthesis in erythroleukemia cells. Free Radic Biol Med. 2003;34(9):1190–1199. [PubMed] [Google Scholar]
  103. Kiang JG, Bowman PD, Lu X, Li Y, Ding XZ, Zhao B, et al. Geldanamycin prevents hemorrhage-induced ATP loss by overexpressing inducible HSP70 and activating pyruvate dehydrogenase. Am J Physiol Gastrointest Liver Physiol. 2006;291(1):G117–G127. [PubMed] [Google Scholar]
  104. Leist M, Single B, Castoldi AF, Kuhnle S, Nicotera P. Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J Exp Med. 1997;185(8):1481–1486. [PMC free article] [PubMed] [Google Scholar]
  105. Lemasters JJV. Necrapoptosis and the mitochondrial permeability transition: shared pathways to necrosis and apoptosis. Am J Physiol. 1999;276(1 Pt 1):G1–G6. [PubMed] [Google Scholar]
  106. Lieberthal W, Menza SA, Levine JS. Graded ATP depletion can cause necrosis or apoptosis of cultured mouse proximal tubular cells. Am J Physiol. 1998;274(2 Pt 2):F315–F327. [PubMed] [Google Scholar]
  107. Wiegele G, Brandis M, Zimmerhackl LB. Apoptosis and necrosis during ischaemia in renal tubular cells (LLC-PK1 and MDCK) Nephrol Dial Transplant. 1998;13(5):1158–1167. [PubMed] [Google Scholar]
  108. Liang H, Ward WF. PGC-1alpha: a key regulator of energy metabolism. Adv Physiol Educ. 2006;30(4):145–151. [PubMed] [Google Scholar]
  109. Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell. 1998;92(6):829–839. [PubMed] [Google Scholar]
  110. Scarpulla RC. Nuclear activators and coactivators in mammalian mitochondrial biogenesis. Biochim Biophys Acta. 2002;1576(1–2):1–14. [PubMed] [Google Scholar]
  111. Scarpulla RC. Nuclear control of respiratory chain expression by nuclear respiratory factors and PGC-1-related coactivator. Ann NY Acad Sci. 2008;1147:321–334. [PMC free article] [PubMed] [Google Scholar]
  112. Aoi W, Naito Y, Mizushima K, Takanami Y, Kawai Y, Ichikawa H, Yoshikawa T. The microRNA miR-696 regulates PGC-1α in mouse skeletal muscle in response to physical activity. Am J Physiol Endocrinol Metab. 2010;298(4):E799–E806. [PubMed] [Google Scholar]
  113. Bürkle A, Brabeck C, Diefenbach J, Beneke S. The emerging role of poly(ADP-ribose) polymerase-1 in longevity. Int J Biochem Cell Biol. 2005;37(5):1043–1053. [PubMed] [Google Scholar]
  114. https://www.empr.com/news/myelosuppression-radiation-bone-marrow-syndrome-leukine-sargramostim/article/754914/.
  115. Farese AM, Cohen MV, Katz BP, Smith CP, Gibbs A, Cohen DM, MacVittie TJ. Filgrastim improves survival in lethally irradiated nonhuman primates. Radiat Res. 2013;179(1):89–100. [PMC free article] [PubMed] [Google Scholar]
  116. Hankey KG, Farese AM, Blaauw EC, Gibbs AM, Smith CP, Katz BP, Tong Y, Prado KL, MacVittie TJ. Pegfilgrastim improves survival of lethally irradiated nonhuman primates. Radiat Res. 2015;183(6):643–655. [PubMed] [Google Scholar]
  117. Kiang JG, Zhai M, Liao PJ, Bolduc DL, Elliott TB, Gorbunov NV. Pegylated G-CSF inhibits blood cell depletion, increases platelets, blocks splenomegaly, and improves survival after whole-body ionizing irradiation but not after irradiation combined with burn. Oxid Med Cell Longev. 2014;2014:481392. [PMC free article] [PubMed] [Google Scholar]
  118. Baxter H, Drummond JA, Stephens-Newsham LG, Randall RG. Studies on acute total body ionizing radiation in animals. I. Effect of streptomycin following exposure to a thermal burn and ionizing radiation. Plast Reconstr Surg. 1953;12(6):439–445. [PubMed] [Google Scholar]
  119. DiCarlo AL, Hatchett RJ, Kaminski JM, Ledney GD, Pellmar TC, Okunieff P, Ramakrishnan N. Medical countermeasures for radiation combined injury: radiation with burn, blast, trauma and/or sepsis. Report of an NIAID Workshop, March 26–27, 2007. Radiat Res. 2008;169(6):712–21. [PMC free article] [PubMed]
  120. Lu J, Shi Z, Su Y, Cheng T, Du Z. Effect of cervical sympathetic ganglia block on the mortality of mice with combined radiation and burn injury and its possible mechanism. Chin J Clin Rehabil. 2006;10:177–180. [Google Scholar]
  121. Kiang JG, Zhai M, Liao PJ, Elliott TB, Gorbunov NV. Ghrelin therapy improves survival after whole-body ionizing irradiation or combined with burn or wound: amelioration of leukocytopenia, thrombocytopenia, splenomegaly, and bone marrow injury. Oxid Med Cell Longev. 2014;2014:215858. [PMC free article] [PubMed] [Google Scholar]
  122. Kiang JG, Anderson MN, Smith JT. Ghrelin therapy mitigates bone marrow injury and splenocytopenia by sustaining circulating G-CSF and KC increases after irradiation combined with wound. Cell Biosci. 2018;8:27. [PMC free article] [PubMed] [Google Scholar]
  123. Kiang JG, Zhai M, Liao PJ, Ho C, Gorbunov NV, Elliott TB. Thrombopoietin receptor agonist mitigates hematopoietic radiation syndrome and improves survival after whole-body ionizing irradiation followed by wound trauma. Mediators Inflamm. 2017;2017:7582079. [PMC free article] [PubMed] [Google Scholar]
  124. Fukumoto R, Cary LH, Gorbunov NV, Lombardini ED, Elliott TB, Kiang JG. Ciprofloxacin modulates cytokine/chemokine profile in serum, improves bone marrow repopulation, and limits apoptosis and autophagy in ileum after whole body ionizing irradiation combined with skin-wound trauma. PLoS ONE. 2013;8(3):e58389. [PMC free article] [PubMed] [Google Scholar]
  125. Fukumoto R, Burns TM, Kiang JG. Ciprofloxacin enhances stress erythropoiesis in spleen and increases survival after whole-body irradiation combined with skin-wound trauma. PLoS ONE. 2014;9(2):e90448. [PMC free article] [PubMed] [Google Scholar]
  126. Kumar KS, Kiang JG, Whitnall MH, Hauer-Jensen, M. Perspectives in radiological and nuclear countermeasures. In: Medical consequences of radiological and nuclear weapons. Fort Detrick: Office of the surgeon general, Borden Institute; 2012. p. 239–66.
  127. Ha CT, Li XH, Fu D, Moroni M, Fisher C, Arnott R, Srinivasan V, Xiao M. Circulating interleukin-18 as a biomarker of total-body radiation exposure in mice, minipigs, and nonhuman primates (NHP) PLoS ONE. 2014;9(10):e109249. [PMC free article] [PubMed] [Google Scholar]
  128. Kiang JG, Smith JT, Hegge SR, Ossetrova NI. Circulating cytokine/chemokine concentrations respond to ionizing radiation doses but not radiation dose rates: granulocyte-colony stimulating factor and interleukin-18. Radiat Res. 2018;189(6):634–643. [PMC free article] [PubMed] [Google Scholar]
  129. Xiao M, Bolduc DL, Li X, Cui W, Hieber KP, Bünger R, Ossetrova NI. Urine interleukin-18 (IL-18) as a biomarker of total-body irradiation: a preliminary study in nonhuman primates. Radiat Res. 2017;188(3):325–334. [PubMed] [Google Scholar]
  130. Hegge SR, King GL. Radiation dose-rate effects on select biomarkers in a mouse total-body irradiation model. Radiate App. 2017;2:158–163. [Google Scholar]
  131. Jones JW, Bennett A, Carter CL, Tudor G, Hankey KG, Farese AM, Booth C, MacVittie TJ, Kane MA. Citrulline as a biomarker in the non-human primate total- and partial-body irradiation models: correlation of circulating citrulline to acute and prolonged gastrointestinal injury. Health Phys. 2015;109(5):440–451. [PMC free article] [PubMed] [Google Scholar]
  132. Li XH, Ha CT, Fu D, Xiao M. Micro-RNA30c negatively regulates REDD1 expression in human hematopoietic and osteoblast cells after gamma-irradiation. PLoS ONE. 2012;7(11):e48700. [PMC free article] [PubMed] [Google Scholar]
  133. Menon N, Rogers CJ, Lukaszewicz AI, Axtelle J, Yadav M, Song F, Chakravarti A, Jacob NK. Detection of acute radiation sickness: a feasibility study in non-human primates circulating miRNAs for triage in radiological events. PLoS ONE. 2016;11(12):e0167333. [PMC free article] [PubMed] [Google Scholar]
  134. Shi Y, Wang Y, Li Q, Liu K, Hou J, Shao C, Wang Y. Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases. Nat Rev Nephrol. 2018;14(8):493–507. [PubMed] [Google Scholar]
  135. Luckett LW, Vesper BE. Radiological considerations in medical operations. In: Walker RI, Cerveny TJ, editors. Medical consequences of nuclear warfare, part 1. Falls Church: TMM publications; 1989. pp. 227–244. [Google Scholar]

 

 

Compartilhe

Entre em contato com a gente!

ATENÇÃO: se você não deixar um e-mail válido, não teremos como te responder.

×